Benjamin Good
I am a theoretical biophysicist with a background in experimental evolution and population genetics. Our group is interested in the short-term evolutionary dynamics that emerge in rapidly evolving microbial populations like the gut microbiome. Technological advances are revolutionizing our ability to peer into these evolving ecosystems, providing us with an increasingly detailed catalog of their component species, genes, and pathways. Yet a vast gap still remains in understanding the population-level processes that control their emergent structure and function. Our group uses tools from statistical physics, population genetics, and computational biology to understand how microscopic growth processes and genome dynamics at the single cell level give rise to the collective behaviors that can be observed at the population level. Projects range from basic theoretical investigations of non-equilibrium processes in microbial evolution and ecology, to the development of new computational tools for measuring these processes in situ in both natural and experimental microbial communities. Through these specific examples, we seek to uncover unifying theoretical principles that could help us understand, forecast, and eventually control the ecological and evolutionary dynamics that take place in these diverse scenarios.